
1. Introduction
Marine ecosystems are sustained at their base by net primary production (NPP). Variations in NPP cascade 
upward to higher trophic levels, driving variations in living marine organisms (e.g., zooplankton, or krill), which 
are sensitive to changing environmental conditions (Chassot et al., 2010; Stock et al., 2014; Tagliabue et al., 2021). 
In the Southern Ocean's seasonal ice zone, where sea ice seasonally extends and retreats, phytoplankton grow 
intensely for a relatively short period (<10 weeks) during the austral spring, resulting in a rapid increase in NPP 
(Arrigo et al., 2008; Arteaga et al., 2020; Douglas et al., 2023; Moore & Abbott, 2000; Uchida et al., 2019). In 
the subpolar Southern Ocean, across both the seasonal ice zone and Antarctic coastal polynyas (a region that 
we collectively call the sea ice zone), the spring increase in NPP from intense phytoplankton growth accounts 
for as much as 15% of total annual NPP in the Southern Ocean (Arrigo et al., 2008; Taylor et al., 2013). These 
short annual periods of intense growth, or blooms, are thus an important driver of the Southern Ocean marine 
ecosystem. Even though the relationship between NPP and upper trophic level biomass is complex (Friedland 
et al., 2012; Stock et al., 2017), skillful predictions of monthly NPP on seasonal-to-interannual time scales that 
capture the fluctuations in spring bloom production may help to better constrain predictions of ecological quan-
tities and assist stakeholders in fishery management and marine conservation (Brooks & Ainley, 2022; Deppeler 
& Davidson, 2017; Moreau et al., 2020).

Abstract Every austral spring when Antarctic sea ice melts, favorable growing conditions lead to an 
intense phytoplankton bloom, which supports much of the local marine ecosystem. Recent studies have found 
that Antarctic sea ice is predictable several years in advance, suggesting that the spring bloom might exhibit 
similar predictability. Using a suite of perfect model predictability experiments, we find that November net 
primary production (NPP) is potentially predictable 7 to 10 years in advance in many Southern Ocean regions. 
Sea ice extent predictability peaks in late winter, followed by absorbed shortwave radiation and NPP with a 
2 to 3 months lag. This seasonal progression of predictability supports our hypothesis that sea ice and light 
limitation control the inherent predictability of the spring bloom. Our results suggest skillful interannual 
predictions of NPP may be achievable, with implications for managing fisheries and the marine ecosystem, and 
guiding conservation policy in the Southern Ocean.

Plain Language Summary In very much the same way as we do for the weather, we can make 
forecasts of many aspects of the earth system. For example, rather than trying to predict how much rain will 
fall next Tuesday, we can explore how much algal growth might take place in the oceans around Antarctica in 
several months time. Such predictions could be extremely useful for managing the fragile ecosystems of these 
regions, for example, informing fishing quotas in an upcoming season. However, just like for weather forecasts, 
there are upper limits for how far into the future we can expect to accurately make such predictions. It's this 
upper limit that we try to understand in this theoretical modeling study. We find that the upper limit is actually 
rather long (as much as 10 years!), and show that this is because of the close relationship between algal growth 
and sea ice (ice formed at the ocean surface) in this cold polar region. In turn, the extent of the sea ice can be 
predicted a long time in advance because there is a lot “memory” in this component of the earth system.
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•  Seasonal progression of predictability 
suggests that sea ice and light 
limitation control the inherent 
predictability of the spring bloom
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The spring bloom is closely linked to the seasonal retreat of sea ice (Arrigo et al., 2008; Arteaga et al., 2020; 
Moore & Abbott,  2000; Uchida et  al.,  2019), which has been shown to be predictable. Perfect model (PM) 
experiments, which assess the “potential predictability” of the climate state assuming perfectly known initial 
conditions and perfectly known model physics, show that the Antarctic sea ice edge location has interannual 
predictability with lead times of up to 3 years (Holland et al., 2013; Marchi et al., 2019). Using suites of initialized 
hindcasts from a General Circulation Model (GCM), Bushuk et al. (2021) found that observed winter Antarctic 
sea ice extent (SIE) can be skillfully predicted with an 11-month lead in the Weddell, Amundsen/Bellingshausen, 
Indian, and West Pacific sectors. These PM experiments and GCM-based hindcasts attribute the predictability 
and prediction skill of Antarctic sea ice to the significant thermal inertia of the ocean which causes ocean heat 
content anomalies to remain at depth over the summer and reemerge during the autumnal sea ice advance, while 
being transported by the mean ocean circulation (Bushuk et al., 2021; Holland et al., 2013; Marchi et al., 2019).

Over the past decade, the potential for skillful seasonal-to-interannual predictions of marine primary production 
has been shown (Séférian et al., 2014; Park et al., 2019; Frölicher, Ramseyer, et al., 2020). This work has revealed 
that skill exists in locations where the rate of phytoplankton growth is determined by a process that itself exhibits 
predictability, for example, nutrient supply (Brune et al., 2022; Ham et al., 2021; Krumhardt et al., 2020). To 
date, no study has focused on the sea ice zone. Given the robust seasonal prediction skill of Antarctic SIE and the 
importance of sea ice to the sea ice zone spring bloom, we ask the question: How predictable is spring bloom NPP 
in the Southern Ocean sea ice zone and what are the main drivers of spring bloom predictability?

In this study, we assess the regional potential predictability of spring bloom NPP in the Southern Ocean using a 
suite of PM experiments performed with an Earth System Model (ESM). In this case, the PM framework deter-
mines the upper limit of predictability in the system assuming perfect representation of biogeochemical dynamics 
in addition to physics. After finding that spring bloom NPP and its associated physical drivers are predictable on 
seasonal-to-interannual time scales, we use a lead/lag diagnostic correlation analysis to elucidate the mechanisms 
of NPP predictability in this model.

2. Methodology
Model simulations were performed with the Earth System Model ESM2M (Dunne et al., 2012, 2013) developed 
by the Geophysical Fluid Dynamics Laboratory (GFDL). The GFDL-ESM2M model is a fully coupled ESM 
with atmosphere, land, ocean, and sea ice components, and includes interactive ocean biogeochemistry. The 
atmosphere component is nearly identical to that in the GFDL Climate Model 2.1 (Delworth et al., 2006) and 
has 24 vertical layers with a horizontal resolution of 2° latitude by 2.5° longitude. The ocean component uses 
the MOM4 model (Griffies et al., 2005) with 50 vertical layers and a nominal horizontal grid resolution of 1° 
latitude by 1° longitude, refined smoothly to 1/3° resolution at the equator. The sea ice component uses the 
same grid as the ocean component and simulates three thermodynamic layers, five ice thickness categories, and 
elastic-viscous-plastic sea ice dynamics (Winton, 1999).

The GFDL-ESM2M model simulates ocean biogeochemistry using the Tracers of Ocean Phytoplankton with 
Allometric Zooplankton version 2.0 (TOPAZv2), which models 30 tracers to describe cycles of carbon, nitro-
gen, phosphorus, silicon, iron, oxygen, alkalinity, lithogenic material, and surface sediment calcite (Dunne 
et al., 2013). TOPAZv2 resolves three phytoplankton groups: small (cyanobacteria and picoeukaryotes), large 
(diatoms and other eukaryotes), and diazotrophs (nitrogen-fixing phytoplankton). The rate of phytoplankton 
growth depends on irradiance, nutrient availability, and temperature. Organic biomass is lost through grazing by 
zooplankton and direct bacterial respiration. In this study, we consider NPP integrated over the top 100 m of the 
ocean, where the majority of phytoplankton growth takes place.

The fidelity of the simulation's representation of Southern Hemisphere sea ice has been presented in Dunne 
et al.  (2012) and Frölicher, Aschwanden, et al.  (2020) (see their Figures 10 and 11, respectively). The model 
has a low bias in sea-ice concentration and extent in the Weddell Gyre in particular (due to the emergence of 
large open ocean polynyas, discussed further in Text S2 in Supporting Information S1) but broadly captures the 
seasonal cycle. Representation of NPP is challenging to assess in this part of the ocean, considering the paucity 
of comprehensive observations. Comparison to satellite ocean color (Dunne et al., 2013, see their Figure 3) and 
observation-based estimates of NPP (Le Grix et al., 2022, see their Figure B1) shows that the model captures the 
right order of magnitude of biological activity close to the Antarctic continent, but generally has a positive bias in 
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open ocean regions such as the eastern Weddell Gyre. Figure S1 in Supporting Information S1 shows that NPP in 
a historically forced simulation of GFDL-ESM2M has low variance on inter-annual timescales in comparison to 
observation-based products, particularly in open-ocean regions (note that this figure is a deseasonalized version 
of Figure B1 from Le Grix et al., 2022). Again, shelf and coastal regions exhibit comparatively favorable fidelity. 
This figure also shows the wide spread in observational estimates in this region. The model represents surface and 
subsurface nutrients well, but overestimates subsurface oxygen (Dunne et al., 2013)—a bias that can likewise be 
traced to the intermittent emergence of open ocean polynyas.

We use a preindustrial control simulation and a suite of PM experiments conducted with GFDL-ESM2M as 
described in Frölicher, Ramseyer, et al.  (2020). A 300-year preindustrial control simulation is branched from 
a 1000-year quasi-steady-state simulation initialized with conditions from 1860 (Dunne et al., 2012). The PM 
experiments branch off from the preindustrial control simulation at six different start dates: January 1st in the 
years 22, 64, 106, 170, 232, and 295 (years chosen at random). Each start date contains 40 ensemble members, 
each initialized with an infinitesimal perturbation in sea surface temperature (SST) added to a single grid cell 
in the Weddell Sea. The perturbations applied to the ensemble members were evenly distributed between 0.002 
and −0.002°C. Each ensemble member was forced with identical preindustrial boundary conditions and was run 
for a duration of 10 years with the last ensemble group extending beyond the preindustrial control simulation by 
5 years. The temporal resolution of all variables analyzed here is monthly mean.

We use the prognostic potential predictability (PPP) metric to assess the predictability of NPP and quantities rele-
vant to the spring bloom. The PPP is an estimate of the inherent upper limit of prediction skill of a given model. 
From Pohlmann et al. (2004), PPP is given by the following equation:

𝑃𝑃𝑃𝑃𝑃𝑃 (𝜏𝜏) = 1 −

1

𝑁𝑁(𝑀𝑀 −1)

∑𝑁𝑁

𝑗𝑗=1

∑𝑀𝑀

𝑖𝑖=1

(

𝑋𝑋𝑖𝑖𝑗𝑗(𝜏𝜏) −𝑋𝑋𝑗𝑗(𝜏𝜏)

)2

𝜎𝜎2
𝑐𝑐

 

where Xij is the value of a given variable for the ith ensemble member of the jth ensemble, 𝐴𝐴 𝑋𝑋𝑗𝑗 is the jth ensemble 
mean, 𝐴𝐴 𝐴𝐴2

𝑐𝑐  is the variance of the control simulation for a given target month, N is the number of ensembles (N = 6), 
M is the number of ensemble members (M = 40), and τ is the forecast lead time. Intuitively, PPP assesses how 
ensemble members chaotically diverge over time by comparing the ensemble spread to the natural variability of 
the control simulation. When PPP is equal to zero, the ensemble spread is identical to the simulated natural vari-
ability of the control simulation, which indicates that the variable could not have been skillfully predicted from 
the initial conditions. When PPP is equal to one, the spread of the ensemble members is perfectly distinguishable 
from the simulated natural variability which indicates that the model is capable of perfectly predicting the varia-
ble given accurate initial conditions.

For our diagnostic analysis, we compute the Pearson correlation coefficient between NPP at a target month 
and a predictor variable at months leading the target month. We perform this correlation analysis for all 12 
target months with a maximum lead time of 13 months. For both the PM predictability assessment and diag-
nostic correlation analysis, we consider six sectors of the Southern Ocean in our study: Weddell (60°W–20°E), 
Indian (20°E−90°E), West Pacific (90°E−160°E), Ross (160°E−130°W), and Amundsen and Bellingshausen 
(130°W–60°W), plus the pan-Antarctic region, which encompasses all aforementioned sectors, following Bushuk 
et al. (2021). To capture the sea ice zone, the northern boundary for all sectors is 55°S and the southern bound-
ary is the Antarctic continent. The sector boundaries are shown in Figure S2 in Supporting Information S1, and 
seasonal climatologies of relevant variables in each sector are shown in Figure S3 in Supporting Information S1. 
We perform an F-test with the ensemble and control run variances to determine significant PPP values above 
the 95% confidence level (PPP > 0.183), and use a t-test that accounts for autocorrelation following Bretherton 
et al. (1999) to determine significant correlation coefficients above the 95% confidence level.

3. Results
Figure 1 shows PPP time series for NPP over the 10-year forecast period. Since the suite of PM experiments are 
initialized on January 1st, near perfect NPP potential predictability (PPP > 0.9) exists in January of the first year 
(Figure 1; see bottom-left corner of each panel). At longer forecast times, NPP potential predictability decreases 
as the initial perturbations of the ensemble members grow chaotically and diverge, making it more difficult to 
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predict their future state from the initial conditions. Across all regions, the highest PPP values occur in spring, 
from October to December, indicating that spring NPP is potentially predictable. NPP in the Weddell sector 
(Figure 1b) has the highest spring PPP throughout the forecast period, maintaining predictability for NPP in 
September through December beyond the 10 years lead times. The Indian (Figure 1c) and West Pacific sectors 
(Figure 1d) have lower PPP than the Weddell sector, but PPP remains significant in November for several years. 
NPP in the Amundsen/Bellingshausen sector (Figure 1f) has high PPP for up to 10 years in the spring with maxi-
mum PPP in December. Unlike the other sectors, Ross sector NPP does not have consistently significant PPP in 
the spring (Figure 1e), though it is notable that significant values re-emerge a couple of months later, in January, 
after the climatological peak in NPP. While we show that NPP is predictable on interannual time scales, the high-
est PPP values (>0.4) occur in November of the first forecast year, suggesting that nearly half of the spring NPP 
variance can be predicted almost 1 year in advance. We focus our further analysis on this first-year November 
maximum to elucidate the key drivers of NPP predictability.

Figure 2 shows the regional predictability of NPP and potential key drivers of the sea ice zone spring bloom—sea 
ice extent (SIE), mixed-layer depth (MLD), surface irradiance (IRRSFC), and surface dissolved iron (FEDSFC)—
for the first 13 months of the forecast period. As in Figure 1, NPP predictability peaks in November for the 
pan-Antarctic (Figure 2a), Weddell (Figure 2b), Indian (Figure 2c), and West Pacific (Figure 2d) sectors while 
the Amundsen/Bellingshausen (A/B; Figure 2f) sector has maximum NPP predictability in December. Spring 
NPP is generally unpredictable in the Ross sector (Figure 2e). In the Pan-Antarctic case, as well as prominently 
in the Weddell, Indian, West Pacific, and A/B, the November peak in NPP predictability is preceded by—at 1 to 
2 month leads—that of SIE and IRRSFC, indicating that the alleviation of light limitation could be a prominent 
source of NPP predictability. Peaks in SIE predictability are accompanied, or slightly preceded, by peaks in MLD 
predictability (in all except the West Pacific and Ross sectors). This correspondence likely stems from the close 
link between SIE predictability and the characteristics of the mixed layer, which mediate the upward mixing of 
subsurface heat (Bushuk et al., 2021; Libera et al., 2022). In the A/B and, to a lesser extent, Indian sectors, the 
timing of high surface iron predictability—which follows that of the MLD and precedes that of NPP—indicates 
that alleviation of nutrient limitation could be an important source of NPP predictability in that area. While 
wintertime iron predictability is high in other areas (specifically the Weddell and Ross sectors), its alignment 
with spring bloom NPP predictability is less clear. In the following, we highlight the potential role played by SIE 

Figure 1. Regional predictability of net primary production given by the prognostic potential predictability (PPP) metric 
computed from a suite of perfect model (PM) experiments with the GFDL-ESM2M model. The full 10-year forecast period 
from the PM ensembles is displayed with forecast years on the x-axis and months on the y-axis. PPP values above the 0.183 
significance threshold are hatched and have a 95% confidence level based on an F-test.
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and IRRSFC as a source of NPP predictability, and revisit the role of iron in the discussion. Although temperature 
impacts NPP, it plays a mediating rather than limiting role and, as a result, its impact on predictability is second-
ary (see Text S1 in Supporting Information S1).

In Figure 3, we arrange key spring bloom drivers and NPP according to the timing of their respective peaks 
in predictability. We also add the PM predictability of surface chlorophyll a (CHL) concentration and surface 
biomass (BIOM) since these metrics can be estimated using satellite (Behrenfeld et al., 2017) and biogeochemical 
float (Arteaga et al., 2020) data, and could be integrated into operational forecasts informed by these PM predict-
ability results. Aside from the Ross sector, all regions exhibit a diagonal structure in their predictability peaks in 
Figure 3, suggesting a progression of predictability starting with SIE and MLD, followed by IRRSFC, and finally 
NPP. The pan-Antarctic (Figure 3a), Weddell (Figure 3b), and Indian (Figure 3c) sectors have the most defined 
progression of predictability with a 2 to 3 months lag between maximum SIE and NPP predictability. In these 
regions, we also see maximum predictability for chlorophyll a and surface biomass lagging the November peak 
in NPP predictability by 1 to 3 months. The West Pacific (Figure 3d) and Amundsen/Bellingshausen (Figure 3f) 
sectors display a less defined diagonal structure but still exhibit a 2 to 3 months lag between maximum SIE and 
NPP predictability. An equivalent perspective for the progression of predictability from MLD, to surface iron, to 
NPP (Figure S6 in Supporting Information S1) shows that while it may be present in some sectors (specifically 
A/B, Weddell, and Indian), it is notably absent in others, and for the Pan-Antarctic. In either case, these results 
support the interpretation that the spring bloom mechanism (Figure  3g, further discussed below) causes the 
elevated predictability of spring NPP in the model simulations.

To further examine the spring bloom and the relationship between its drivers and NPP, we perform a corre-
lation analysis of SIE and IRRSFC anomalies preceding NPP anomalies up to 13 months in advance using the 
300-year preindustrial control simulation (Figure 4). The colormap reveals the correlation of NPP in each target 
month (displayed along the x-axis) with SIE (top) and IRRSFC (bottom; positive downwards) for each lead time 
(displayed along the y-axis). For example, the value at target month November and lead 3 months provides the 
correlation between November NPP and SIE/IRRSFC in the previous August. Outside of September to March, 
values of NPP are vanishingly small in both magnitude and variance (because it is polar night). Consequently, 
correlations during these months could be spurious and rather meaningless. In line with this, the regression 

Figure 2. Regional predictability of sea ice extent (SIE), mixed layer depth (MLD), surface irradiance (IRRSFC), surface 
dissolved iron (FEDSFC), and net primary production (NPP) determined by the prognostic potential predictability (PPP) 
metric. The dotted vertical line marks November in the first forecast year. PPP values above 0.183 (horizontal dashed line) are 
significant at a 95% confidence level based on an F-test. PPP values above the significance threshold indicate that anomalies 
of the given variable are predictable with the ESM2M model given perfect initial conditions.
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Figure 3. (a–f) Regional predictability of sea ice extent (SIE), mixed layer depth (MLD), surface irradiance (IRRSFC), net primary production (NPP), Chl a (CHL), and 
surface biomass (BIOM) given by the prognostic potential predictability metric computed from a suite of Perfect model experiments. Here, we display the first 
year of forecast time and arrange the variables on the x-axis following what we expect from the climatological spring bloom mechanism. (g) The mechanism of the 
climatological spring phytoplankton bloom. 1) Accumulation of nutrients in mixed layer during winter. 2) Sea ice melts and retreats. 3) Ocean surface receives more 
solar radiation, penetrates deeper into the water column. 4) The MLD shoals due to an influx of fresh melt water and greater solar radiation. 5) The shallow MLD traps 
phytoplankton and nutrients near the surface where light is abundant. 6) Phytoplankton grows intensely in the favorable conditions, forming the spring bloom.
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coefficient (not shown) is substantially smaller in these months than during the spring and summer. Consistent 
with our proposed spring bloom predictability mechanism (Figure  3g), we find a strong inverse relationship 
between NPP and SIE in all sectors, which means anomalously low SIE leads to anomalously high NPP, and 
vice versa. The relationship is strongest in the Weddell sector (Figure 4a) where November NPP anomalies have 
high correlation (r < −0.75) with SIE anomalies up to five lead months. The correlation is lower in the other 
sectors, but these sectors also exhibit statistically significant negative correlation of November NPP anomalies 
with earlier SIE anomalies up to five lead months. In all sectors aside from the Ross Sea, we also find signifi-
cant correlation between November NPP anomalies and SIE anomalies from the previous year, corresponding 
to a winter-to-winter reemergence of SIE anomalies. When examining IRRSFC as a predictor of NPP, we find a 
strong positive relationship in all sectors, consistent with the expectation that increased light availability drives 
enhanced NPP. The positive IRRSFC correlations with November NPP anomalies are significant at shorter lead 
times than the SIE correlations anomalies, but significant correlation is maintained up to 4 months lead, as well 
as lead time beyond 1 year in all regions except for the Ross Sea. This analysis suggests that if late winter and 
early spring SIE and IRRSFC can be skillfully predicted, they should provide associated predictability for spring 
NPP, supporting the proposed predictability mechanism shown in Figure 3. The same correlation analysis was 
carried out for surface iron (Figure S7 in Supporting Information S1). Spring and summertime NPP is positively 
correlated with the previous winter's surface iron concentrations in most sectors, but with correlation coefficients 
somewhat lower than that of IRRSFC and SIE, particularly for a target month of November, the month of maxi-
mum NPP predictability.

4. Discussion and Conclusions
Given the significant influence of NPP variations on marine ecosystems and emerging capabilities in biogeo-
chemical modeling and data assimilation, there have been multiple recent studies assessing the predictability 
of NPP using ESMs on interannual time scales (e.g., Brune et  al.,  2022; Chikamoto et  al.,  2015; Frölicher, 
Ramseyer, et al., 2020; Krumhardt et al., 2020; Park et al., 2019; Séférian et al., 2014; Taboada et al., 2019). 
However, the Southern Ocean seasonal ice zone, which differs from other regions due to the seasonal advance and 
retreat of sea ice and associated drastic changes in the environmental conditions, has received little attention so 
far. Here, we use a suite of PM experiments performed with the GFDL-ESM2M model to assess the predictability 
of NPP and then examine how variations in sea ice retreat influence the predictability of NPP. We find that NPP 

Figure 4. In the upper row, the Pearson correlation coefficient of net primary production (NPP) anomalies at target months January through December and sea 
ice extent anomalies at 0–13 lead months in the (a) pan-Antarctic, (b) Weddell, (c) Indian, (d) West Pacific, (e) Ross, and (f) Amundsen/Bellingshausen sectors. In 
the lower row, the Pearson correlation coefficient of NPP anomalies at the same target months and surface irradiance (IRRSFC) anomalies at the same lead months. 
Correlation values are computed from the 300-year preindustrial control simulation. The dotting indicates Pearson correlation coefficient values significant at the 95% 
confidence level according to a t-test accounting for autocorrelation.
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is predictable 7 to 10 years in advance in all regions except the Ross sector (Figure 1). NPP predictability tends 
to peak in November (11 months from the January first initialization date), suggesting that skillful predictions of 
NPP on seasonal to interannual time scales could be possible given accurate initial conditions. Moreover, since 
SIE provides the dominant source of spring NPP predictability and recent studies have shown skillful operational 
seasonal predictions of Antarctic SIE (e.g., Bushuk et al., 2021; Morioka et al., 2019), skillful NPP predictions 
may be practically within reach.

In a Pan-Antarctic sense, and across most sectors, the progression of predictability from SIE and MLD, to IRRSFC, 
and to NPP with a 2 to 3  months lag (Figures  2 and  3a–3f) supports our hypothesis that the spring bloom 
mechanism—relating the seasonal growth and melt of sea ice to both nutrient and light availability (Figure 3g)—
exerts control over the inherent predictability time scales of NPP and other spring bloom quantities. The corre-
lation analysis (Figure 4) shows a strong relationship between springtime NPP anomalies and earlier SIE and 
IRRSFC anomalies, supporting the PM predictability results. The sequence of these relationships aligns with what 
we causally expect given the spring bloom mechanism. Negative correlation between NPP and earlier SIE is 
expected since greater SIE inhibits phytoplankton growth by limiting light. Positive correlation between IRRSFC 
and NPP also agrees with the spring bloom mechanism since greater surface irradiance increases light availabil-
ity, which promotes phytoplankton growth.

Nutrient availability could also play an important role in the predictability of NPP in some regions. The PM and 
correlation analyses (Figure 2, and Figures S6 and S7 in Supporting Information S1) indicate that predictability 
of wintertime nutrient concentrations are important for springtime NPP predictability in the A/B sector, and could 
play a role in the Weddell and Indian sectors. As prior work has indicated (Krumhardt et al., 2020), the major 
source of predictability is likely to come from whichever factor (light or nutrients) is most commonly limiting 
growth during the month of the spring bloom. While the model diagnostics necessary to assess this comprehen-
sively were not archived for these experiments, the model's climatological seasonal cycle indicates that surface 
iron concentrations are not exhausted until January or February, supporting the possibility that November-time 
growth is not iron limited (Figure S3 in Supporting Information S1). Further work, including assessing nutrient 
and light limitation within a PM framework, is required to fully assess the relative impact of these drivers on 
NPP. The balance of these mechanisms has significant ramifications for the translation of “potential predictabil-
ity” into real world prediction skill, since observational constraints for sea-ice extent and MLD are notably more 
abundant than those for nutrients.

There are clear regional differences in the predictability of NPP and other spring bloom quantities. The Weddell 
sector is consistently more predictable than all other regions, while the Ross sector is consistently the least 
predictable. The low predictability of NPP in the Ross sector is accompanied by low predictability in sea-ice 
(Figure 2). The anomalously low sea ice predictability of the Ross Sea has also been identified in earlier work on 
seasonal predictions with other GFDL models (Bushuk et al., 2021), PM experiments performed with CCSM3 
(Holland et al., 2013), and multi-model predictions submitted to SIPN-South (Massonnet et al., 2020). Bushuk 
et al.  (2021) speculated that the low Ross Sea ice predictability could be related to the strong meridional ice 
drift in this region, which implies that sea ice dynamics have a larger influence on the Ross sea ice edge position 
compared to other Antarctic regions. Since these ice dynamics are largely driven by unpredictable winds, this 
potentially makes the sea ice edge more difficult to predict in this region. The spring bloom mechanism described 
above suggests that the inherent challenges in predicting Ross sea ice may translate to inherently low predictabil-
ity of Ross NPP. However, the robustness of low Ross Sea predictability is still quite uncertain, as the multi-model 
PM study of Marchi et al. (2019) shows that there is substantial model diversity in Ross sea ice predictability, with 
some models exhibiting high predictability in this region.

It is important to note that the real-world applicability of the timescales and mechanisms of predictability found in 
this study depends inherently on the fidelity of the model's representation of primary production in the Southern 
Ocean sea ice zone. In Section 2 we noted that the GFDL-ESM2M model captures large-scale biogeochemical 
processes reasonably well (Dunne et al., 2012, 2013; Frölicher, Aschwanden, et al., 2020; Le Grix et al., 2022), 
but exhibits a notably low bias in interannual variability of NPP in the sea-ice zone (Figure S1 in Supporting 
Information S1). It is likely that certain processes, such as the dynamic link between NPP and sea-ice cover 
(a key component of the predictability in the model), are more complex in reality. For example, although the 
model allows under-ice production, there is no representation of ice-associated algae, and it is questionable to 
what extent it is able to accurately capture the exact timing of the phytoplankton bloom in the Southern Ocean. 
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Recent observations suggest that biomass starts increasing under sea ice prior to its retreat (Horvat et al., 2022), 
though peak biomass accumulation is expected in November (Arteaga et al., 2020; Llort et al., 2015), which is 
consistent with the month of peak predictability in our experiments. Additionally, the biogeochemical model in 
ESM2M (TOPAZv2) lacks an explicit representation of zooplankton (Dunne et al., 2013), with phytoplankton 
loss via grazing represented as a function of phytoplankton abundance and temperature. Consequently, top-down 
controls, which could play an important role in the evolution of the spring bloom in the Southern Ocean (Rohr 
et al., 2017), are not fully represented. Finally, like many global models, GFDL-ESM2M exhibits multi-decadal 
variability in the subpolar Southern Ocean, and this is a source of bias in several aspects of the model's physical 
and biogeochemical state. In Text S2 in Supporting Information S1, we show that our results are not sensitive to 
the timing of initialization with respect to the phase of this variability. Broadly, this study should be taken as an 
estimate of the timescales and mechanisms of potential predictability, while acknowledging that the model may 
not capture some of the nuances of bloom dynamics in the sea ice zone.

In summary, we have assessed the potential predictability of NPP in the GFDL-ESM2M model using a suite of 
PM experiments. Given the important role of sea ice retreat in the spring bloom mechanism and recent work indi-
cating that sea ice is predictable on seasonal-to-interannual time scales, we hypothesized that NPP and quantities 
relevant to the spring bloom should be predictable on similar time scales. Supporting our hypothesis, we find 
that November NPP is potentially predictable in all regions except the Ross sector for 7 to 10 years in advance, 
with highest potential predictability in the Weddell sector. By examining the timing of the peak in predictability 
across quantities relevant to the spring bloom, we find a temporal progression of maximum potential predictabil-
ity from SIE and MLD, to IRRSFC, and to NPP with a 2 to 3 months lag, aligning with the climatological spring 
bloom mechanism. Lead-time correlations of SIE predicting NPP and IRRSFC predicting NPP further support the 
progression of predictability. While the robustness of these results still must be corroborated with other ESMs, 
the existence of NPP potential predictability and the progression of predictability from SIE suggests that if we 
can initialize a model accurately and skillfully predict SIE, then prediction skill should exist for November NPP, 
potentially extending years in advance. Such skillful NPP predictions would be critical for predicting ecosys-
tem changes and the biomass of living marine organisms, guiding fishery management, and informing marine 
conservation.

Data Availability Statement
Data and Jupyter notebooks to reproduce the figures in this manuscript are available on Zenodo (Buchovecky 
et al., 2023).
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